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Representations of global supersymmetries for all N 

G R J Bufton and J G Taylor 
Department of Mathematics, King’s College, London, UK 

Received 29 July 1982 

Abstract. We present the global supersymmetry rules for the fundamental representation 
of N-extended supersymmetry for all N and an associated invariant quadratic Lagrangian. 
This is achieved by the use of a suitable set of basis functions defined in terms of the 
spinor generators acting on the vacuum state of the representation. These basis functions 
allow the action of the generators on them to be obtained explicitly, as well as their 
internal symmetry properties. Specific examples are given of this for N = 3, 4, 6 and 8. 

1. Introduction 

In order to obtain a full quantum field theory for N-extended supergravity with N C 8 
in explicitly superfield-theoretic or locally supersymmetric form it is necessary to have 
the auxiliary field structures. These latter are also of greatest importance in obtaining 
the torsion constraints in a superspace formulation in a differential geometric 
framework. These auxiliary fields are now known for N = 1 (Stelle and West 1978, 
Ferrara and van Nieuwenhuizen 1978, Sohnius and West 1981) and 2 (Fradkin and 
Vasiliev 1979, de Wit and van Holten 1979). It has been shown that there is a barrier 
to the usual constructions at N = 3 (Rivelles and Taylor 1981, 1982c, Taylor 1982a) 
where representations with central charge are essential in order to circumvent the 
‘no-go’ theorems. 

A method has been developed recently (Taylor 1982b, c, Taylor and Rivelles 1982, 
Rivelles and Taylor 1982d) for obtaining the auxiliary fields at the linearised level by 
discovering those irreps of the N-extended supersymmetry algebra, S N ,  which may 
be combined through field redefinition rules to produce linearised N-extended super- 
gravity with no non-local terms in the SUSY transformation laws for the redefined 
fields. These latter are the physical fields known for N up to 8 and the auxiliary fields 
yet to be discovered for N 3 3. A similar approach can be used to construct N = 4 
SYM where again no auxiliary field structure is presently known. 

The method described above has been used to discover two new non-minimal 
20 + 20 formulations of N = 1 supergravity at the linearised level (Rivelles and Taylor 
1982a) and prove that there are no other auxiliary field sets for this value of N. It 
has also been used to discover (Rivelles and Taylor 1982b) a new 40+40 set of 
auxiliary fields for N = 2 supergravity at the linear level, in this case containing a 
central charge on the auxiliary multiplets. 

In order to use this method to construct linearised off-shell supergravity for higher 
N it is necessary to have the irreducible representations (irreps) of the associated 
algebra, S N .  We present the transformation laws for the component fields and an 
associated invariant quadratic Lagrangian for the fundamental superspin Y = 0 and 
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SU(N) singlet irrep. This is done for general N by means of basis functions of the 
fundamental irrep which were introduced earlier for N = 1 and 2 (Jarvis 1976, Taylor 
1980a, b). These functions form a halfway house between the full superfield approach 
and a component approach and, as such, are of value for providing a bridge between 
these two extremes. 

In the next section we define these basis functions for any N and obtain their 
transformations under global SUSY in 5 3. The transformation rules for the associated 
component fields are deduced in 8 4 along with appropriate reality conditions. These 
conditions were introduced originally for N = 2 SUSY (Firth and Jenkins 1975) and 
extended to general N in terms of superprojectors (Siege1 and Gates 1981). In § 5 
we give the specific transformation laws and Lagrangians for the interesting cases of 
N = 3, 4, 6, 8. The case N = 4 has already been published (de Wit 1981), the other 
cases appearing here for the first time to our knowledge. In a final section we discuss 
the relevance of these results. 

2. Basis functions 

In order to specify our notation, and also to define the basis functions of a particular 
irreducible representation of the SUSY algebra SN, we consider the SUSY generators 
(St-,, Sa-z) in chiral notation with (St+)*  = Sa-l. The algebra satisfied by these 
generators, in the absence of central charges, will be 

sp-,I+ = - 2 ( g T ) a + p - s ' J  [Sh,, Sb-I+ = 0 (2.1) 
with 7 the charge conjugation matrix and the generators P,, JFy have standard 
commutators. The representation theory of S N  (Taylor 1980a, b, 1982b, c, Taylor 
and Rivelles 1982, Rivelles and Taylor 1982d, Jarvis 1976, Pickup and Taylor 1981, 
Pickup unpublished, Rittenberg and Sokatchev 1981, Ferrara et a1 1981, Ferrara and 
Savoy 1982) shows that each irrep may be classified by various Casimirs constructed 
from the covariant operators ( D i t ,  with 

[St,, oh+]+ = [Sh,, Dp-,]+ = 0 etc 

[oh+, D p - J l +  = +2(gV)c2+p-s'J 
(2.2) 

The extension of the Pauli-Lubanski vector for the Poincart group to SN gives as a 
Casimir the superspin Y, with values 0, 3, . . . . We may also extend the SU(N) 
operators acting as automorphisms of SN so as to commute with S N ;  the associated 
Casimirs correspond to those of irreps of SU(N) .  Each irrep, with again Y and SU(N) 
classification, has Lorentz spin content classified by USp(2N), each spin value having 
states classified by SU(N). This irrep can be constructed by applying the generators 
Sa-x to a suitable vacuum state with Lorentz and SU(N) transformation laws of the 
irrep. The states may then be reduced by the usual rules of direct product decomposi- 
tion of irreps of the Lorentz group and SU(N). 

We will concentrate our attention on the Y = 0 singlet SU(N) irrep (the funda- 
mental irrep), since all other irreps may be obtained by addition of suitable Lorentz 
and SU(N) indices to all states of the fundamental irrep. We proceed by defining the 
vacuum state of the irrep as a differential operator on component functions as 

[oh+, ob+]+ = 0.  

N 

IO) = n ( S X )  . 1. 
i = l  

(2.3) 
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By (2.3) we mean that we consider Si, as the differential operator 

st+ = i ( a / a i a + ,  +(pe%+) (2.4) 

acting on the constant function of 0 ;  the action of p is thus non-trivial. That 10) in 
(2.3) is the chiral Y = 0 vacuum is clear from the fact that we may replace D t ,  by 
SlC when acting on 1 ,  so that 

N 
D',+IO) = n (S:s:)sh+ ' 1 = 0 

i = 1  

which is the condition for the chiral vacuum state. Equation (2.5) will also be satisfied 
by all states constructed from (2.3) by application of products of Sa..,. We must 
decompose these according to irreps of the Lorentz and SU(N) groups, and SO, by 
standard arguments, have the complete set of basis functions 

ee l - . .  

We then get the superfield expansion 
r l  . . r N  - - ,,,* a - . . .a i  - k ,  . . . k m  

d' = 1 .ai- k l . . . k ,  r . r,v - 1 ~ 

1, m 
(2.7) 

where we take the field components, A"'-  "I-r",' to have the same structure as 
the basis functions i.e. symmetry in the spinor components and asymmetry in the two 
sets (upstairs, downstairs) of internal indices with a S-traceless condition between the 
two. This gives the field component the same characteristics as the basis function and 
so it carries the same Lorentz and SU(N)  labels. 

3. Transformation of basis functions 

In order to obtain the SUSY transformation rules of the component functions of (2.7), 
we need to obtain those of the basis functions (2.6). We therefore consider the effect 
of acting with an extra on the basis functions (2.6). The method of direct product 
multiplication tells us that this would add an extra box to the Young tableau for the 
SU(N) irrep of the basis function. Hence, labelling the basis function by the number 
of its downstairs indices, (1, m ) ,  we see that under the action of Sp-,, 

( l ,  m ) + ( l +  1, m ) + ( l - l ,  m + l ) .  

Bearing in mind that the basis functions are S-traceless on the k's and r's, we get 
rl . - . r v  

S p - l e a l - . . . a i -  k l  ... k ,  

~ ~ ~ ~ r ' ~ p - a , - , . . ~ l - k , , , , ~ ~ i ~ m  r z . . . r  +bsil'ep-a,-.. .kl.. .k,l r 2 . , . 1  

(3 .1)  
where here we use the convention of no dividing factors in the symmetrisation or 
antisymmetrisation. 

r l  .r,v-1-,,, cv P - c a ~ - ~ a > - . .  ai-) t k  l . . . k , ,  

The S-traceless condition then gives us 

b = [(! + l ) m ' ] - ' a .  (3.2) 

Contracting with S : ,  and q P - a l -  in turn, both on the RHS of (3.1) and explicitly on 
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the LHS, using (2.6), we get the values 

a =  b =  
(- 1)' +m ( N  - I - m ) 

(2+ I + m)(N - I - m ) ! '  

(-1)'l 
( I  + 1) ! * 

(- 1 ( N  - I - m ) 
(2  + I  + m ) ( N  - I -  m )  ! m !  ( I  + 1) '  

e=- (3 .3)  

If, instead, we were to act with Sg+ on the basis functions (2.6) we would get, using 
(2 .1)  to pull the S ,  through onto the S+'s  in IO), 

( 3 . 5 ~ )  

In the special case that I = 0, m = N/2 (for even N ) ,  there is a double E condition 
r l  . . . r N I z  

On e k l . . . k N / 2  Of form 

If this is applied to (3 .1)  we see that we may combine the first and second terms on 
the RHS, whilst the third term is zero due to I = 0. The same arguments as above lead 
to 
s e r l  ' Y / 2  

P - '  k i  ~ N / Z  

=:[a + ( t ~ ) ! b l ( ~ l r l e  r 2  r ~ / 2 1  
0 - k l  k ~ / 2  

and a similar expression for sb+e$;::,rFG2; the values of a, 6 ,  a' and b' entering in these 
formulae are unchanged from (3 .3)  and ( 3 . 5 ~ ) .  
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In general, we may impose a reality condition on the basis functions in the case 
of even N. These transformation rules ((3.1), (3.3) and (3.5)) then enable us to evaluate 
this reality condition explicitly for the basis function in this case. Under such circum- 
stances we can relate basis functions of opposite chirality by 

where F = n D+D+ II D-D-. 

(2.1), (3.3) and (3.5) to  give 
Since SY-i commutes with F we can act with it on either side of (3.6)' and use 

where 

(-l)'+'(N - 1 - m )  b" = 
(-l)'+'(N - I - m )  

(N - I - m ) !  m !  ( I  + 1)' 
a" = 

(N-1-m)!  ' 

( - l ) N - m l ( N - m + l )  
c l ! =  

( I  + l)! 

These coefficients are the SU(N)-conjugate versions of a ' ,  b', c '  
By applying (3.6) and equating terms we get 

aC(N,  I + 1, m )  = a"C(N, 1, m )  ( 3 . 8 ~ )  

bC(N, 1 + 1, m )  = b"C(N, I ,  m )  (3.8b) 

cC(N, 1 - 1, m + 1) = -4p2c"C(N, I ,  m). ( 3 . 8 ~ )  

On substitution, the first two are equivalent and we get 

C(N,  1 + 1, m )  = (-1)"+'(2 + I  + m)C(N, I ,  m )  

C(N, I - 1, m + 1) = (-l)N-'-m+' (4p2)(N - m  + l)C(N, I ,  m )  (3.9) 

where these are properly defined, i.e. 0 S I ,  0 c m, 0 s N - 1 - m. These equations are 
also true for n = N/2, although the derivation is slightly different. 

Solving (3.9) recursively gives us 

But F 2  = ( 1 6 ~ ~ ) ~ ,  so applying F twice gives 

(3.10) 
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giving 

C ( N ,  0,O) = 2 N / ( N  + l)! 
(3.11) 

This gives us our reality condition between positive and negative chirality basis 
functions. This will enable us to  obtain similar conditions on the field components in 
Q 4. 

C ( N ,  1, m )  = -(-l)"+'ilm+') (4p2)"2" (1+I+m)! / (N-m +l)!. 

4. Transformation of components 

The usual definition of the SUSY transformations SA of the component functions A of 
(2 .7)  is 

where we have suppressed the indices for compactness. From Q 3 we know the effect 
of 6 on the basis functions: 

I1 '\ Taking terms in e a l -  k l  k , l  "' gives us on substitution and with a factor (-1)' 
from pulling the E through the basis function 
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(4.4) 
Here, we have had to apply trace conditions on two of the terms in order to keep 

the SU(N) classification for the components. This involves adding extra terms which 
vanish on contraction with the basis function. For example, 

[ k  p - a l -  . . .  a*- k ,  ... k ,  IS-traceless &,A r ,  ... r N - 1  ~m 

s = l  

with 

and using 

we get 

k , ... k , ,  SA,, r 1 .  ..IN - ,  

( I  + 1)2 k , . . .  k ,  I S -  traceless + i ( p y  " ' E  -A  m ! ( I  + 2) 

(1  + 2) 
( m  + 1)(1+ 1) ik 

- 2 ( @ ~  +I )e-AFsr 
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However, we want (4.6b) to be y-traceless as well so we need to modify this 
slightly (again the modification vanishes when contracted with the respective basis 
function). The terms affected are the first and third, e.g. 

1 l l - 1 ) / 2  

1 s = l  
( 4 . 6 ~ )  k i  Y '  k Fh-Aw,zr+Eu-Ap'L-- 1 ( Y & ; Y  ~ : ) u - A @ l  ,,.!vw,+! Ir 

giving ( y  SA) = 0 as required. 
Finally, we redefine 

giving * chirality for m even/odd. 
This gives us, for even m, 

(4.8a) 

(4.86) 

plus similar terms for m odd, each with extra factors of p in appropriate places. 
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5. Examples 

( b )  N = 4 :  Y=O 

We consider the Y = 0 representation with the component field of spin 2 to have 
dimension -2 .  We therefore need the bosons with m even to be auxiliary. This we 
do by taking d = - $  and redefining the other fields: 

4 +Er* B ( m  odd) + p2B.  

Since we have a reality condition on the components (4.10), (4.11) our transforma- 
tion rules are: 

a B r l r 2 r j r q  = ( 1 / 4 ! ) F + ~ ~ 1 a * - r z , 3 ~ 4 ~  = ~ ( B " " " "  j *  

~ ~ r j r z r q  = ( ~ - 4 - r ~ r Z r ~  - i ~ ~ ( ~ r l $ - i r z r 3  + a r 2 4 - r l l r 3  + S r 3 $ - r l r z ,  j )  

&;;* -1 - [ k  k 1 k l k ,  

1 2 3 J  E r j  r z r 3 r 4  ( E  

k k k k k 

k k 
- ( 1 / 3  ! ) ( F + [ r I $ * , , r 3 ]  - i F t j S [ r 1 4 : r z r 3 1 )  = -6 ( B  ? r z r 3 ) *  

- - 'B4+:lr2 + F + r r l ~ $ - r 2 ~  1 
1 k k k k  k 

+ Z F  r:r4 + ~+r,a$ !I:,"' = 8 (B z:;, )* 
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when we take account of the reality conditions 

( c )  N = 6 :  Y = @  

We consider here only the irrep with maximum spin 3 having dimension -1. Since 
this is a straightforward application of our formulae, we just give the table o f  the 
coefficients in the order in which they occur in equations ( 4 . 8 ) :  

Field 1 tn I I1 I l l  I v 

0 
0 
0 
0 
2 
2 
2 
4 
4 
5 
1 
1 
1 
3 
3 
5 

0 
1 
2 
3 
I) 

1 
2 
0 
1 
0 
0 
1 
2 
0 

0 

0 
D 
0 
0 

-5  
4 

-3 
-3/2!  

2/21 
-1131 
- 1 2  
10 
-8 
-8  

6 
-4 

0 
1/11 
1 / 2 !  
1/3!2 
0 
l i l !  
1 / 2 1  
I) 

1 / 1 !  
0 
0 
1/11  
1 / 2 !  
0 

0 

0 
I)  

0 
0 

-1 

-3 
-1121 
-2!2! 
-1/3! 
- 2  
-4 
-6 
-2 
-4 
-2 

- 7  

1 /6 !  
-1151 

1,'4! 
-1/3!2 
: /4 !  

-1/3! 
1 / 2 !  
1/21 

- 1 / 1 !  
0 
115! 

-1/4!  
1/31 
1 / 3 !  

- 1 / 2 !  
1 

with all other fields given by the reality conditions ( 4 . 1 0 )  and (4.11). 
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Our Lagrangian is 

( d )  N = 8 :  Y=O 

We again just give the table of coefficients and the Lagrangian for the Y = 0 irrep 
with maximum spin having dimension - 1 .  We also have a reality condition on the 
fields given by (4.10) and (4 .11 ) .  

Field 1 m I II  III IV 

0 0 
0 1 
0 2 
0 3 
0 4 
2 0 
2 1 
2 2 
2 3 
4 0 
4 1 
4 2 
6 0 
6 1 
8 0 
1 0 
1 1 
1 2 
1 3 
3 0 
3 1 
3 2 
5 0 
5 1 
7 0 

0 0 
0 1/1! 
0 1 /2! 
0 1/3! 
0 1 /4!2 

-7 0 
6 l / l !  

- 5  1/2! 
4 1/3! 

-5/2! 0 
4/2! 1/1! 

-3/2! 1 /2!  
-3/3! 0 

2/3! 1/1! 
-1/4! 0 

-16 0 
14 1 /1!  

-12 1/2! 
10 1/3!  

-12 0 
10 1 /1!  
-8 1 /2 !  
-8 0 

6 1 
-4 0 

0 1/8! 
0 -1/7! 
0 1/6! 

0 1/4!2 
0 -1/5! 

-1 1/6! 

-3 1 /4! 
-4 -1/3! 
-1/2! 1 /4! 
-2/2! -1/3! 
-3/2! 1 /2 !  
-1/3! 1/2! 
-2/3! - l / l !  
-1/4! 0 
-2 1/7! 
-4 - 1 /6! 
-6 l / 5 !  
-8 -1/4! 
-2 1/5! 

-6 1/3! 
-2 1/3! 
-4 -1/2! 
-2 1 

-2 - 1 / 5 !  

-4 -1/4! 
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6. Discussion 

In order to use the irreps presented so far to build the off -shell associated supergravities, 
it is necessary to construct further irreps with higher values of Y and SU(N) content. 
In particular, for N = 4 SYM it is necessary to take the SU(4) 15-dimensional adjoint 
representation attached to all the component fields in the N = 4 irrep given in the 
last section. The resulting irrep will then have the correct SU(4) assignments for a 
singlet spin 1, a quartet of spin $ and a 6 of spin 0 (Taylor 1982b, c, Taylor and 
Rivelles 1982, Rivelles and Taylor 1982d). The remaining fields will have to be 
removed by appropriate central charge irreps which have to be constructed by different 
techniques from those used in the present paper. This is because, in the presence of 
central charges, chirality is no longer useful to classify irreps and, in particular, the 
fundamental irrep is no longer purely chiral or anti-chiral. We have developed 
techniques through dimensional reduction which allow us to obtain such irreps with 
more than one central charge. They will be described elsewhere. A similar situation 
arises for N = 4, 6 and 8 supergravity where appropriate central charge irreps are 
also needed, as well as the irreps without central charges but with higher Y and 
SU(N) content. We will also report on this elsewhere. 

Besides these applications to constructing linearised extended SYM and SGRS, we 
are interested in the possibility of extending certain of these irreps to be local 
representations. This will then allow for nonlinear supergravities to be constructed 
more directly. 

Finally, we remark that these representations for N > 8  are of interest in the 
construction of higher-spin interacting field theories. The question here is whether it 
is possible to nonlinearise these theories by suitable Noether techniques. It is usually 
said that such theories would be internally inconsistent. It is possible that such 
representations may avoid these difficulties, though further work would be needed to 
show this. 
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