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Representations of global supersymmetries for all ¥

G R J Bufton and J G Taylor
Department of Mathematics, King's College, London, UK

Received 29 July 1982

Abstract. We present the global supersymmetry rules for the fundamental representation
of N -extended supersymmetry for all N and an associated invariant quadratic Lagrangian,
This is achieved by the use of a suitable set of basis functions defined in terms of the
spinor generators acting on the vacuum state of the representation. These basis functions
allow the action of the generators on them to be obtained explicitly, as well as their
internal symmetry properties. Specific examples are given of this for N =3, 4, 6 and 8.

1. Introduction

In order to obtain a full quantum field theory for N-extended supergravity with N <8
in explicitly superfield-theoretic or locally supersymmetric form it is necessary to have
the auxiliary field structures. These latter are also of greatest importance in obtaining
the torsion constraints in a superspace formulation in a differential geometric
framework. These auxiliary fields are now known for N =1 (Stelle and West 1978,
Ferrara and van Nieuwenhuizen 1978, Sohnius and West 1981) and 2 (Fradkin and
Vasiliev 1979, de Wit and van Holten 1979). It has been shown that there is a barrier
to the usual constructions at N =3 (Rivelles and Taylor 1981, 1982¢, Taylor 1982a)
where representations with central charge are essential in order to circumvent the
‘no-go’ theorems.

A method has been developed recently (Taylor 1982b, ¢, Taylor and Rivelles 1982,
Rivelles and Taylor 1982d) for obtaining the auxiliary fields at the linearised level by
discovering those irreps of the N-extended supersymmetry algebra, Sy, which may
be combined through field redefinition rules to produce linearised N -extended super-
gravity with no non-local terms in the susy transformation laws for the redefined
fields. These latter are the physical fields known for N up to 8 and the auxiliary fields
yet to be discovered for N =3. A similar approach can be used to construct N =4
sYM where again no auxiliary field structure is presently known.

The method described above has been used to discover two new non-minimal
20+ 20 formulations of N =1 supergravity at the linearised level (Rivelles and Taylor
1982a) and prove that there are no other auxiliary field sets for this value of N. It
has also been used to discover (Rivelles and Taylor 1982b) a new 40440 set of
auxiliary fields for N =2 supergravity at the linear level, in this case containing a
central charge on the auxiliary multiplets.

In order to use this method to construct linearised off-shell supergravity for higher
N it is necessary to have the irreducible representations (irreps) of the associated
algebra, Sy. We present the transformation laws for the component fields and an
associated invariant quadratic Lagrangian for the fundamental superspin Y =0 and
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SU(N) singlet irrep. This is done for general N by means of basis functions of the
fundamental irrep which were introduced earlier for N =1 and 2 (Jarvis 1976, Taylor
1980a, b). These functions form a halfway house between the full superfield approach
and a component approach and, as such, are of value for providing a bridge between
these two extremes.

In the next section we define these basis functions for any N and obtain their
transformations under global susy in § 3. The transformation rules for the associated
component fields are deduced in § 4 along with appropriate reality conditions. These
conditions were introduced originally for N =2 susy (Firth and Jenkins 1975) and
extended to general N in terms of superprojectors (Siegel and Gates 1981). In §5
we give the specific transformation laws and Lagrangians for the interesting cases of
N =3,4,6,8. The case N =4 has already been published (de Wit 1981), the other
cases appearing here for the first time to our knowledge. In a final section we discuss
the relevance of these results.

2. Basis functions

In order to specify our notation, and also to define the basis functions of a particular
irreducible representation of the susy algebra Sy, we consider the susy generators
(S..,S.-) in chiral notation with -(S..)*=S, .. The algebra satisfied by these
generators, in the absence of central charges, will be

[Sies Saoile=—2(p)asp-8" [Saer S5-1.=0 (2.1)

with n the charge conjugation matrix and the generators P,, J,, have standard
commutators. The representation theory of Sy (Taylor 1980a, b, 1982b, ¢, Taylor
and Rivelles 1982, Rivelles and Taylor 1982d, Jarvis 1976, Pickup and Taylor 1981,
Pickup unpublished, Rittenberg and Sokatchev 1981, Ferrara et al 1981, Ferrara and
Savoy 1982) shows that each irrep may be classified by various Casimirs constructed
from the covariant operators (D.., D,_,) with

[S;*s DL+]+ :[Sil'*" DB—/]*' = 0 etc

i i i (2'2)
[Da+’DB—i1*=+2(pn)a+B—6 i [DaﬂD]B*]*-:O-

The extension of the Pauli-Lubanski vector for the Poincaré group to Sy gives as a

Casimir the superspin Y, with values 0, %, . ... We may also extend the SU(N)

operators acting as automorphisms of Sy so as to commute with Sy ; the associated
Casimirs correspond to those of irreps of SU(N). Each irrep, with again Y and SU(N)
classification, has Lorentz spin content classified by USp(2N), each spin value having
states classified by SU(N). This irrep can be constructed by applying the generators
S.—; to a suitable vacuum state with Lorentz and SU(N) transformation laws of the
irrep. The states may then be reduced by the usual rules of direct product decomposi-
tion of irreps of the Lorentz group and SU(N).

We will concentrate our attention on the Y =0 singlet SU(N) irrep (the funda-
mental irrep), since all other irreps may be obtained by addition of suitable Lorentz
and SU(N) indices to all states of the fundamental irrep. We proceed by defining the
vacuum state of the irrep as a differential operator on component functions as

0= 18801, 23)
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By (2.3) we mean that we consider S’ as the differential operator
Sus =1(3/800+i + (P65 )a-) (2.4)

acting on the constant function of 8; the action of p is thus non-trivial. That ,\0> in
(2.3) is the chiral Y =0 vacuum is clear from the fact that we may replace D, by
S.. when acting on 1, so that

D% 10y=[] (§.8.)S%. - 1=0 (2.5)

i=1

which is the condition for the chiral vacuum state. Equation (2.5) will also be satisfied
by all states constructed from (2.3) by application of products of S,..;, We must
decompose these according to irreps of the Lorentz and SU(N) groups, and so, by
standard arguments, have the complete set of basis functions

S m - !
Caream et e TT(S 84 [T SamiO). (2.6)
u=1 t=1
We then get the superfield expansion
Pl PN mfem A Q=—eeay =k k
& =IZ Cor—ai- byl AT (2.7)
.m

where we take the field components, A*' ™%~ i %n  to have the same structure as

the basis functions i.e, symmetry in the spinor components and asymmetry in the two
sets (upstairs, downstairs) of internal indices with a §-traceless condition between the
two. This gives the field component the same characteristics as the basis function and
so it carries the same Lorentz and SU(N) labels.

3. Transformation of basis functions

In order to obtain the susy transformation rules of the component functions of (2.7),
we need to obtain those of the basis functions (2.6). We therefore consider the effect
of acting with an extra Sz_; on the basis functions (2.6). The method of direct product
multiplication tells us that this would add an extra box to the Young tableau for the
SU(N) irrep of the basis function. Hence, labelling the basis function by the number
of its downstairs indices, (/, m), we see that under the action of S;_,,

Um)y-(U+1,m)+U-1, m~+1).

Bearing in mind that the basis functions are §-traceless on the k’s and r's, we get

MeIN —tem

So-€armai- o
— [r fa TN —t-m r !
= a5,- ’eﬁ—al—..,m— k21‘.‘£’m ! + ba[ileﬁ*al‘--- kzl"'k"‘]
1

TN i
+Cnﬁ—(a1—ea2~.. m—)xkl...‘\ll(m’ (31)

where here we use the convention of no dividing factors in the symmetrisation or
antisymmetrisation.

The §-traceless condition then gives us
b=[I+1)m'] a. (3.2)

Contracting with §,, and n° *'” in turn, both on the RHs of (3.1) and explicitly on
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the LHs, using (2.6), we get the values

G S i) b o )" N —1=m)
TQR+HI+mN-1-m)Y TRHIAmN=I-m)Im!(+1)

(=D

T+ (3.3)

If, instead, we were to act with S};* on the basis functions (2.6) we would get, using
(2.1) to pull the S, through onto the S.’s in |0},

S;?+ea1—...al— ;11---’}::71-,"
_=ntm iroor
T 2(pM)aria-Casmy ki
(__1)[+1m . .
+T2(F)B+p 81k1€p—ar—... K. k]
(—1)mm — [
+ —2(P)p+"" S otk ar- iy k] (3.4)

The last term is then given by (3.1), giving us the transformation rule

TN —t-m

i

SB+ea1-'.-az"k1---km
_ v i Pl PN e
=a'2p)s" Sl y-arm o n]

— ol Pl —t e ]
+0'2(P)a-" Btki€y-ai-ai- skl

+C'2(PN) gty -Caray kL (3.5)
where
D m b= (-1"'m C,z(—l)‘*’"l(1+1+m)
m! m! (N-m-D1(+1) (+1)!

(3.5a)

In the special case that / =0, m = N/2 (for even N), there is a double ¢ condition
on e} "¥2 of form

N/2
[SYRUNYF I (_1) TN SpeSN ANz

r r 5
ki..knyz ‘[(N/2)|]2£ e MzskxmkN/z11---1N/2951 SNJ2°

If this is applied to (3.1) we see that we may combine the first and second terms on
the rRHs, whilst the third term is zero due to / = 0. The same arguments as above lead
to

Fy.r
Sa-i€i,. k2
_ 1 1 { Tyl 1
~a+ (N b1 e,
(-1
+[(lN)']28rl b SN/25k1 RINVPRES lN/Za ‘eg— 51 Sh-{/zz) (3.1a)
2 !

and a similar expression for s, 82, the values of a, b, a’ and b’ entering in these
formulae are unchanged from (3.3) and (3.5a).



Representations of global supersummetries for all N

325
In general, we may impose a reality condition on the basis functions in the case
of even N. These transformation rules ((

), (3.3) and (3.5)) then enable us to evaluate
this reality condition explicitly for the basis function in this case. Under such circum-
stances we can relate basis functions of opposite chirality by

1
Feal-maz*;ll.rfml m=C(N’ l’m)zl H Po,- but €8,+.. B(+rk1 Nt
n=1
where F=II1D,D.I1D_D_

(3.6)
Since §,-

; commutes with F we can act with it on either side of (3.6), and use
{2.1), (3.3) and (3.5) to give
F(ad\ e - 7 +b8ie

Py PN e
g K1ekom] TN y—a~€ay

ik ™)
=C(N, 1, m)2' H PP (a"2(p), "8V

[ ]
1 27 IN~I-m
Co+Br+.Bi+ ky..km

+ bﬂz(p)'y—p)fa[l €o+8,

e 'N] +¢"2(PN) -8, +€ Bar i) b ™)
3.7)
where
, DTN =1=m) pro SN —1=m)
. N=l-m) TWN—I—m)iml(+1)
, DY TN —m+ 1)
¢ (+1)!
These coefficients are the SU(N )-conjugate versions of a’, b', ¢’
By applying (3.6) and equating terms we get
aC(N,[+1,m)=a"C(N, I, m) (3.8a)
bCN,I+1,m)=b"C(N,l,m) (3.8b)
¢cC(N,I=1,m+1)=—4p’c"C(N, I, m). (3.8¢)
On substitution, the first two are equivalent and we get

CINI+1,m)=(-1)"""2+1+m)C(N, |, m)

(3.9)
where these are properly defined, i.e. 0</, 0=m, 0<N —/—m. These equations are

CN,I-1,m+1)=-D" """ 4p N -m+1)CWN, I, m)
also true for n = N/2, although the derivation is slightly different

Solving (3.9) recursively gives us

chmen LHFmIN D!
C(N, I, m)=—(=1)!"*Dim*D N—ma D 4p*)"C(N,0,0). (3.10)
But F = (16p>)", so applying F twice gives
Fecxla[ ’1 IN—l-m

<K

=C(N’ Lm)C(N, LN =1 =m)dpDe o
__( 1)(l+1)(m+1+N { m+1)((N+1)'.C(N, 0, 0))2(4p2) .

1IN —-m
a1—~... k... kp,



326 G R J Bufton and J G Taylor
giving

C(N,0,0)=2"/(N+1)!
+1im+1 N (311)
C(N, I, m)=—(=D)""""Vap?y™2N 1+ 1+ m) /(N —m + 1)

This gives us our reality condition between positive and negative chirality basis
functions. This will enable us to obtain similar conditions on the field components in
§4.

4. Transformation of components

The usual definition of the susy transformations A of the component functions A of
(2.7)is

86 =(£S)dp =Y (ES)eA =Y eSA (4.1)
Im I,m
where we have suppressed the indices for compactness. From § 3 we know the effect
of 8 on the basis functions:
(E_S)é’al—,,,a,— - o m

ki...km

TR _B+ ol TenTN L m
:(El SB :+Ex SB¢)ea17mmf ! o

P -
_ =B~ sy =iB—alr, P2 tN o ]
=a¢ € ey Brok TOET Bii'€ o k)
eI U m Y- T ot m
8 a—Carm ooy e T A 2E 1 ) €y ai- kak]

Tty Am] — N i
+b 2E+lp) [kl Yo T klz...;:m]’ +C,2(E*iﬁn)(al"eax—...a( Ikri;(\m
(4.2)

where a, b, c, a’, b', ¢’ are given in (3.3) and (3.5a).
Contracting with A®" %~ "= and remembering that §;.A =0, we get

N . (a+m!b)(N_[_m)!_r\B_ ra P g a == ko k
(55)(614): (l +1)’ € ! eralfA.oq~k.1mkm A ! ! rll.“rg\;”,[,,m
cl! [i Pl Zqo o= k.1
(m+1) 8&1"60ﬁ~ az*(kl ke A k 71 '\mt m

(a'+ (N=[-m)b)m!

g et oAy kLK
(&._qu) ey P al—klz 1: -1 A 1 i 1 i

I+ 1) Lo IN - m
C,“ = iy ray a,—..o—kyk
mz(&[#’ﬂ)apeaz—,.mmkl...k‘m emA S S L (4.3)

,

Taking terms in e, - o k’{'::",:'ﬂ"  gives us on substitution and with a factor (—1)'
from pulling the £ through the basis function

6Aal*.ua[7k,,..km _ (_1);\'$1(N7“1_ﬂl + 1)([ + 1)

PNt -m

o as—.ay—ikok,
E IA 2 ! ir o
(1+1+m) - 1! i

[+1

_ [klAp—al . ka.ok, 18-traceless
——(—E,_ ’ .
mil+2)"° e
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(1+1>2(e+.m R S

l'l

(+1H)2+1+m)

_ m+1
LR e tv; vy gy

- —a o= kyk
2(8 +[,1ﬂn)p~Ap ST rzlu.r;s;“_(,m]a-traceless~
(4.4)

Here, we have had to apply trace conditions on two of the terms in order to keep
the SU(N) classification for the components. This involves adding extra terms which
vanish on contraction with the basis function. For example,

[k pma—a— ko k. ]8 traceless
gptAPTT

p—a == kyk, ] 1 NG [ky gp—a;~— . k..l
—eo*A k Pl PNl — m_(1+2) §=:1 6 'A ! P re ] Fer 1o TNl
Redefining
oy ==k k _ i [T 25—1"Cz,) k
A FLIN—~t—m (”TY p) A“{-"“E/:" [ even
s=1
L LN (@, g 4 o) k
N 1:Il (,’n.yu;p) F2sm1m 42 Az(i--.u’((l—l)/Z)r [ odd (45)
with
p“XAMi---'I“:pulAil "_(‘Y“IAHA ")0“_ =gulu2Au~w~2 = MM2AZ1_H-2
and using
tloy— ay— 1 . v Q= =i
8-( ! A“g )L,:'=$(ln‘y p) v (8 l‘Yv'pAy.ﬂ'kr)
we get
(“D)"TMN=l=-m+ DU +1) P
BAL = £V i PALs i
Wi ATl pt Vet
(l+2) -[k - K1y 8- traceless _ (m+1)(l+1) ik
A r2 T3 A LLE : rl'
m’(l+2)( In ) (1/2) ( ‘Y(p.lAp.z.“) )
DU+ +1+m)
([+2)(N—l— ) 2( [rlpAul,..rz...])é traceless (46a)
5Aua . Vlt(vm( m
_(= 1)"‘*1(N—1—m+1)(1+1) A
(1+{+m)l* fa-Au
(1+1)?

: 'Lk -
l(p‘YVSE 1)Q—Ay‘u_ ,’fz k. 18-traceless

+—_—
ml(l+2)

(m+DU+D
(1+2)

(D" U+ 1’2+ +m)
(1+2)(N—l-—m)! 2 ('Y €[r1+)a p A”""Z IN —1-m]8-traceless. (46b)

2(pei)a-Au
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However, we want (4.65) to be y-traceless as well so we need to modify this
slightly (again the modification vanishes when contracted with the respective basis
function). The terms affected are the first and third, e.g.

i k i e 112 v k
Ea—Au'ir_)sa~Au'[r_7 21 (‘YM;‘Y E~)Q~A;¢1..,)‘L‘,1vu“1.,.ir (46C)
giving (y - 84) =0 as required.
Finally, we redefine

k (2 [Ueme1/2] ( '> 1+m
Bury =0 A“’((1+1) (A+1+m))2
— 1+m (1') ‘> i+m
Yuars' s . = () )a((1+1)!(1+1+m). 2 (4.7
= 5b Bim , k ([')2 ) l+m
ol BBl A“@(M,A,(1+1)’(1+1+ m)!)2

giving =+ chirality for m even/odd.
This gives us, for even m,

v CDTTIUN—I=m+1)
8Bur = /2! €Y iui¥rug

l /i oy 1 N kyok]
el G A T WS AN S PP

s=1

m+1 ik =n" - —
+1l 1 2o0r + +[n W .. 721...:',‘\;",,,,,,
Ty e (N—l—m)!(e IGaF ]

k‘,,'kw,...km
s S et ) (4.8a)
S et o= (12N = L=+ D () Buh
1 i—1)/2

v i k
_7 Z (‘YMQ’Y pE')Q*Bﬁlyr-ruls<l"ﬁ‘-s*1---ir>

s=

1., .,
+_[((y 8[—‘( )a+BV’u'fzmkM]

m!
1 N-{-m [k ]
m Zl (‘Y )a+6r‘1Buu.rz.“r,,,”rs¢1.4.rN,,,m>
; 1 1—13/2 l
“20m+ 1) eweBut =7 L eda Bt e t)
(__l)m

(_N——l_—)_ ((ﬂv €+[y,)a+Bu“ o ]

—m Zl Py e‘,)a+6f‘an,u'f;j.'.jk‘"jk‘*“"k"‘> (4.8)

plus similar terms for m odd, each with extra factors of p in appropriate places.
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However, for even N we have the double ¢ condition on the m = N/2 basis
function. This carries over onto the field component and we get the transformation
rules

1 1 k
kyokayn [k a1
B =3 g € R B )
1 (_l)N/Z kokag s bty f = - ki ka
e e s ER AL B

with the extra factor p should N/2 be odd.
Taking N even, we get the reality condition mentioned in § 3:

Fo =(16p>)N?¢* = (16pH)N (e (A )* +e. (A )*) = (Fe )A, +(Fe,)A (4.9)
giving
(16p")NHAS " Ny * = C(N, ], m)2! Hms AR

For the bosons we get

(Bur ) ¥ = (= 1) "By oo (4.10)
and for fermions

(Gpa=r)* = U v (4.11)

Hence we get important reality conditions on the bosons when m =N —{ —m, e.g.
(B,.)*=B, in the N =4 case.

Before we give the invariant Lagrangian for the transformation rules, we need to
consider the dimensions of the field components. From (4.8a, b) it is apparent that
the fermions share the same dimensionality, d, and that the bosons have dimensions
d -3, d +3 for m odd/even respectively. Setting d = —3 we get physical bosons for
m even and auxiliary for m odd and the Lagrangian looks like

£ =X U )l Pur = b = 20) B, )P Bt
+b(l,m=2n+1)(Butr,_ )*B.r (4.12)

The rules (4.8a, b) then give us values for the coefficients

f,m)y==(=H""2mI (N —-I-m)! bl m)=(=)"m!(N—I—m)! (4.13)

where an extra factor of 3 is needed in b(l,m) when 2m+[=N and N is even, so

that the boson is real in the real irrep. We have now given the transformation laws

and Lagrangian for the general N, Y =0 multiplet. It is possible in some cases to

simplify the coefficients further but we feel that this detracts from the general nature
of the equations.
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5. Examples

(a) N=3:Y=0
We get the field components
Wieo s riryars Yooy WL
B.. Bk, B,,..,B\., Bf*, BXs
with the following transformation rules:
8B.yryry = (1/30E o[, vrary)
SBY ., = (1IN P, — 3L p(SF Wi+ 81500)
—(1/2)(E etr PO L) — 26 PO U 00)
8B, "2 =(1/20(eXrus - 3818w ) + (1/1(E ., 0t —2 (8 yle + 8290 )
§BF 1k = (1/31)¢ byt
8B, = —2if y ey —iE iy b, + (1/1)E Uy,
SBY =gy, pt + (110  purey =208 iy, pi*
8 rirsas =—6(Pe ) By —2€0-Brir + i/ 2)( PV e <1r)asBory)
8tra- =4e. B+ (1/1)i((py"e")u-B. ~3(py"e’ )a 6/B.)
—4(pe )a-B) —(1/1Di((v"e+)a-B = 3(y"e.)a-8/BL)
Stk = =2(pe' ) BE 2+ (1/20i(ve%). . BX — 66, .B 52
8pas = ~2(p )ae B = 3(v,0y Pe Ve Bu) = 2eariB L — 5y y € +)as BY)
E =3B 1113r)* P’ By, 2B ¥ B, +2UB I ) *p B iR + 3B Kk prgRikaks
=3B P B — B B + 1210 ) P, + 3T R0
+ 2B e =) P

(b) N=4:Y=0

We consider the Y =0 representation with the component field of spin 2 to have
dimension —2. We therefore need the bosons with m even to be auxiliary. This we
do by taking d = —3 and redefining the other fields:

> ph B(m odd)-p’B.

Since we have a reality condition on the components (4.10), (4.11) our transforma-
tion rules are:
5B,1,,:,3,4 = (1/4!)§+[’1p4//472r3r4] = S(B nirarare )*

k =k 1= k k k
8Br1r2r3 = (E —Ll/ ~rirars —551—(5“(1/7]72@ +6r2d/vr1i13 +6r3df~r172j))

- k 1= k f
- (1/3!>(E*[r1d/4—72r3] *EE«—,'(S[r‘Wer]) = _5(3 ;]’2’3)*
k |k 1, -(k k - ki k
5B'1l722 =4(&- lp(*/"*%]xfz +€+ff1p¢’*:‘2]2)

1 Kk kykyk —k k - kak rr
Tae e (€ Y (59 +E*r3ﬂ¢—’?4")=5(3k111§2)*
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i . i 1- FiFa ok
5Bu'1'z =—-3i¢ “'Yu'pd/—in'z - ls+i7u'pw+r172 +§E+['1pw—wz] = S(BM‘ )"
k o=t k -k l_
6B;.u =21€l_‘yu"j’+ir+(€7l//—ur ! 6 d/ u])
) - ik - — ko, f
- 2l€+i’)’“'d/l—u_ - (E+r¢/+u _Z€+/'67LI/]+;L) = _S(Bué)*
1.2 l.- i
5Bm' =121 E ﬂl//u) f flfﬂym’pdfl)#— =6(Buu)*
1
(sL//u'or—rz _4(8;—BV’”—§(YV‘Y E ;ur)+l Y E-—r)a
[ 1 i
- 2((p€ -v-i)a —Bv':‘_ §('Yu‘7“p€ +i)a 7By.'r)
i i 1. v
5(//(1~r1r2r3 = _SEL—Birlrzr_-; - 2(p€+i)a—Bnr2r3 + &l (‘Y E-'-[r]) 7Bw2r3]
k i k vk 1, v |
6(//(1+r172 =6(psi)a+Bir172+((‘Y E—) +Bwlr2_§(y £I ) (6 Bu]r2+6 Bvrlj))
1 v
_4Ecn-iBr1r2 (ﬂ‘y £+ r1)zx+Bur2] §(1"Y 8——;’)a+6[qu{2])
when we take account of the reality conditions
i kaka vk ryr; ® k o\ _ r
\Brlrz ) _Bklkz (Bu.u) "Buu (Bp.u) __Bp.k-
Our Lagrangian is then
£ =4!B ’ " riuBnrﬂ;u 3'B "173 P Brlrzr;+22‘2'B;(1ylngrlh‘_22‘Br r’BMrlrz
1 r ST
+ZBukp BW +§BMVBMV+§3!(‘D+I : Jplj/*rl’zrz
ryrs 17r
+22"~/j ﬂw‘nrg Zwu~pd/p.—fr-
(c) N=6:Y=0
We consider here only the irrep with maximum spin 3 having dimension —1. Since
this is a straightforward application of our formulae, we just give the table of the
coefficients in the order in which they occur in equations (4.8):
Field [ m I I I v
B 0 0 0 0 0 1/6!
B ., 0 1 0 /1 0 -1/5!
B, 0 2 0 1/2! 0 1/4!
Bl e 0 3 0 1/312 0 -1/312
B v 2 0 -5 0 -1 /4!
Bl 2 1 4 VAN -2 ~1/3!
B, 2 2 -3 1/2! -3 1/2!
B 4 0 -3/2! 0 -1/2! 1/2!
B 4 1 2/2! 11 —2/21 /1
B 6 0 ~1/3 0 ~1/3! 0
Goery » 1 0 -12 0 -2 /5
Go b o ] 1 10 1/1! —4 ~1/4!
G EiKs 1 2 -8 172! -6 1/3!
o =rirars 3 0 -8 0 -2 1/3!
Ba —t0r 3 1 6 1 -4 -1/2!
Gz or 5 0 ~-4 0 -2 1

with all other fields given by the reality conditions (4.10) and (4.11).
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Our Lagrangian is
£=6!B" "p’B, ,.-5!By "Bk .
+2141 Biilp B, ~33131B Bk
—%4!3:}'""‘sz;”,.,., +53!Buzlr2r33urk172'3
~32121BL kP B + 32! B P Blsuann:
éBmml’cBumzr _IX_GBmu-zALaszuwzu-z +L5!'J;r“mrspw”1“"5
NP+ 23N S, — B s,
—%Z'J rxrzpll’u r1r2+8'z’u1uz pd’u:uz*'

d)y N=8:Y=0

We again just give the table of coefficients and the Lagrangian for the Y =0 irrep
with maximum spin having dimension —1. We also have a reality condition on the
fields given by (4.10) and (4.11).

Field ! m I I I Iv
By 0 0 0 0 0 1/8!
By n 0 ! 0 /1 0 ~1/7!
BYk, 0 2 0 1/2! 0 1/6!
Bk 0 3 0 1/3! 0 ~1/5!
BN 0 4 0 1/412 0 1/412
By .16 2 0 -7 0 -1 1/6!
Buri s 2 1 6 /1 -2 ~1/5!
B,/ 2 2 -5 1/2t -3 1/4!
B, KKk 2 3 4 1/3! -4 ~1/3!
Bz 4 0 -5/2! 0 -1/2! 1/4!
Boivstivars 4 1 4/2! /1 -2/2! -1/3!
: 4 2 -3/21 1/2! -3/2! 1/2!
BMIIJ-ZM}VI"Z 6 0 _3/3‘ 0 —1/3! 1/2'
Biiurst 6 1 2/3! 1/1! ~2/3! ~1/1!
B iuzusus 8 0 —-1/4! 0 ~1/4! 0
Garrrr 1 0 ~16 0 -2 1/7!
Yars. e 1 1 14 1/1! -4 ~1/6!
Yasrii2, 1 2 -12 1/2! -6 1/5!
wopiz 1 3 10 1/31 -8 ~1/4!
Gorrrrs 3 0 -12 0 -2 1/5!
Yua—ri..ra 3 1 10 1/1! -4 —1/4!
Wyia+rirars 3 2 -8 1/2! -6 1/3!
‘j’u-luza*-nrzra 5 0 -8 0 =2 1/3'
‘l’uwza—rerz 5 1 6 1 -4 -1/2!
Wiwamsa+rr 7 0 -4 0 -2 1

£=8'B""p’B, ., ~T' B "Bt .
k k k ko k
+2'6'Br11 ;6p BH %6—3'5'3’(1}6213 Pits
+34141 B, pPBY ke — 361 BT p? B, L + 35! B B

.rs
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1 [N ) k. k 1 ryfar k ok, k
—52!4!Buk11k24p Bu.nl..}d+43!3!Buk11£27<33u. 1.2,

rirara

1 i, 2 1 rirsr k
A1 174 — =21 17273
+44'Bu1uzp Buxuznmm 43'Bu1u-2k Buw-zrxrzrz

1 nry 2 kiky 1 s 2
+82!2!Bu1u2k1k2p Buxuz’x'z 82!Buw~2u3p Buxuzus'i’z

+%Bu1u2#-31:Bu-lu2H-3’k+iBH-1M2M3IJ~4p2BMlM2M3M4
LA ARy Y VAL

+32! ST p 3314, P
— 351G gy s — 3 L,

— 32130 P RN P ey

1 I rr k 1 7r
+82! ‘f//uluz +k1 Zpd/umz—’lfz - 15d/u1uzu3—pwuxuzu-3+"

6. Discussion

In order to use the irreps presented so far to build the off-shell associated supergravities,
it is necessary to construct further irreps with higher values of Y and SU(N) content.
In particular, for N =4 syM it is necessary to take the SU(4) 15-dimensional adjoint
representation attached to all the component fields in the N =4 irrep given in the
last section. The resulting irrep will then have the correct SU(4) assignments for a
singlet spin 1, a quartet of spin 3 and a 6 of spin 0 (Taylor 1982b, ¢, Taylor and
Rivelles 1982, Rivelles and Taylor 1982d). The remaining fields will have to be
removed by appropriate central charge irreps which have to be constructed by different
techniques from those used in the present paper. This is because, in the presence of
central charges, chirality is no longer useful to classify irreps and, in particular, the
fundamental irrep is no longer purely chiral or anti-chiral. We have developed
techniques through dimensional reduction which allow us to obtain such irreps with
more than one central charge. They will be described elsewhere. A similar situation
arises for N =4, 6 and 8 supergravity where appropriate central charge irreps are
also needed, as well as the irreps without central charges but with higher Y and
SU(N) content. We will also report on this elsewhere.

Besides these applications to constructing linearised extended sym and sGRrs, we
are interested in the possibility of extending certain of these irreps to be local
representations. This will then allow for nonlinear supergravities to be constructed
more directly.

Finally, we remark that these representations for N >8 are of interest in the
construction of higher-spin interacting field theories. The question here is whether it
is possible to nonlinearise these theories by suitable Noether techniques. It is usually
said that such theories would be internally inconsistent. It is possible that such

representations may avoid these difficulties, though further work would be needed to
show this.
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